Identification of Trend in Spatial and Temporal Dry and Wet Periods in Northwest of Iran Based on SPI and RAI Indices

Abstract:
Introduction
Droughts are natural extreme phenomena, which frequently occur around the world. This phenomenon can occur in any region, but its effects will be more severe in arid and semi-arid regions. Several studies have highlighted the increasing of droughts trend around the world. The majority of studies in assessing the trend of time series are based on basic Mann-Kendall or Spearman's methods and no serious attention has been paid to the impact of autocorrelation coefficient on time series. However, limited numbers of studies have included the lag-1 autocorrelation coefficient and its impacts on the time series trend. The aim of this study was to investigate the trend of dry and wet periods in northwest of Iran using Mann-Kendall trend test with removing all significant autocorrelations coefficients based on SPI and RAI drought indices.
Materials And Methods
Study area has a region of 334,000 square kilometers, with wet, arid and semiarid climate, located in the northwest of Iran. The rainfall data were collected from 39 synoptic stations with average rainfall of 146 mm as the minimum of Gom station, and the highest annual rainfall of 1687 mm, in the Bandaranzali station. In this study, Standardized Precipitation Index (SPI) and Rainfall Anomaly Index (RAI) were used for trend analysis of dry and wet periods. SPI was developed by McKee et al. in 1993 to determine and monitor droughts. This index is able to determine the wet and dry situations for a specific time scale for each location using rainfall data. RAI index was developed by Van Rooy in 1965 to calculate the deviation of rainfall from the normal amount of rainfall and it evaluates monthly or annual rainfall on a linear scale resulting from a data series. Then, correlation coefficients of time series of these drought indices with different lags were determined for check the dependence or independence of the SPI and RAI values. Finally, based on dependence or independence of the time series values, trend analysis of wet and dry periods was conducted in different stations using one of the basic or modified Mann-Kendall tests. Also, the magnitude of the trends was derived from the Theil- Sen’s slope estimator.
Results And Discussion
Time series of SPI and RAI drought indices for a given annual rainfall as an example for three stations of Marivan, Gom and Maku show that during 1991 to 1994 and from 2002 to 2007 are in wet period and during 1987 to 1990 and 1998 to 2001 are in the dry period. It is clearly show that, dry and wet periods in RAI index are more severe than SPI. Comparison the correlation between Lag-1 autocorrelation coefficients values of SPI and RAI time series and Lag-1 autocorrelation coefficients of annual rainfall data indicate that these correlations are high and about 0.97 and 0.99, respectively. This difference is due to the different classification of SPI and RAI drought indices. The results of trend analysis indicate a decreasing trend in most of stations. Also, Mann-Kendall statistic has been declining while eliminating the effect of all significant correlation coefficients of dry and wet periods. This result in both SPI and RAI indices are similar and have a high correlation with R = 0.99. According to results, west of the study area have a significant decreasing (negative) trend. The spatial distribution of dry and wet periods showed that the difference between Mann-Kendall statistics of SPI and RAI indices is minimal. Also, The results show that, the slope of the trend line based on the SPI and RAI drought indices is negative in most of stations and correlation between these two indices in determining the slope of the trend line is high. But, this correlation compared with the trend statistics of SPI and RAI time series is less.
Conclusions
In this study, first the time series of SPI and RAI time series based on annual precipitation and common quantitative classification of mentioned two drought indices were determined. Then, trends of dry and wet periods of selected stations in northwest of Iran were evaluated based on these indices using the Mann-Kendall trend test with removing all significant autocorrelation coefficients. The results from this study indicate that using Mann-Kendall test with removing all significant autocorrelation coefficients effects are essential in assessing trend in time series. Although, according to various studies available in the literature, SPI is known as more accurate than RAI in drought mitigation, but according the results of this study, can solely be used both RAI and SPI index for trend detection.
Language:
Persian
Published:
Journal of water and soil, Volume:30 Issue: 2, 2016
Pages:
655 to 671
magiran.com/p1568277  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!