Effects of Zeolite and Vermicompost on Changes of Zn Chemical Fractionation in a Polluted Soil

Abstract:
Introduction
Soil contamination by heavy metals is a major concern throughout the world, due to persistence of metals in the environment and their toxicity and threat to all living organisms. Several strategies have been used to immobilize heavy metal ions in soils. Immobilization can be achieved by adding natural and synthetic amendments such as zeolites and organic materials. Because of large specific surface area, high cation exchange capacity (CEC), low cost and wide spread availability, zeolites are probably the most promising materials interacting with many heavy metal ions in contaminated soils and water. Organic amendments such as vermicompost contains a high proportion of humified organic matter (OM), may decrease the bioavailability of heavy metals in soil by adsorption and by forming stable complexes with surface functional groups, thus permitting the re-establishment of vegetation on contaminated sites. Recent studies showed that the co-application of zeolite and humic acids could be effective in reducing the available fraction of Pb in a garden polluted soil. Fractionation of heavy metals cations in amended polluted-soils is needed to predict elemental mobility in soil and phyto-availability to plants. Therefore, the objective of this study was to investigate the effects of co-application of zeolite and vermicompost on Zn redistribution in a contaminated soil.
Material and
Methods
A contaminated soil was collected from the top 20 cm in the vicinity of zinc mine in Zanjan province, western north of Iran. The soil sample was air-dried, passed through 2-mm sieve and stored at room temperature. The soil sample was thoroughly mixed to ensure uniformity. Sub-samples were then digested using the hot-block digestion procedure for total Zn concentration. The experiment was conducted under greenhouse condition. The polluted soil was put in polyethylene pots and mixed well vermicompost and zeolite at the rate of 0, 50 and 100 g kg-1 soil. The treatments were evaluated in a 3 × 3 factorial design and were arranged in a randomized block design with three replications. After incubation for 45 days, five seeds of corn were sown in each pot. After germination the seedlings were thinned to 3 per pot. Plants were grown for 2 months under control conditions. After the corn had been harvested, soil samples were air-dried, and analyzed for pH, cation exchange capacity (CEC), and electrical conductivity (EC). Chemical fractionations of Zn in soils collected after the pot trial were investigated using the procedure of Salbu et al. (1998). This procedure subdivides the heavy-metal distribution into an water-extractable笗Ⅺ砞榹 fraction, a form bound to carbonates, a form bound to Fe and Mn oxides, a form bound to organics, and a residual form. An analysis of variance was used to test significance (P≤0.05) of treatment effects and Duncan multiple range test (P≤0.05) was used to compare the means (SAS, 2002).
Results And Discussion
Soil pH gradually decreased with application of both vermicompost and zeolite amendments. This may be due to degradation of organic matter and releasing of organic and inorganic acids such as carbonic, citric and malic acids as well as H produced from mineralization of nitrogen in the organic matter. Electrical conductivity (EC) of soils increased with increasing amounts of vermicompost and zeolite applications. The highest EC was observed in pots containing 10% w/w zeolite and 10% w/w vermicompost. Addition of zeolite significantly increased soil CEC. The overall distribution of Zn in different fractions was in the sequence residual (38.6%)> Fe and Mn oxides bound (31.0 %) > carbonated (21.6%)> organic (4.3%)≈exchangeable 솫 soluble (4.4 %). The application of vermicompost significantly decreased concentration of Zn in water笗Ⅺ砞榹 fraction as compared to the control soil. Although singly zeolite amendment had not significant effect on water笗Ⅺ砞榹 Zn concentration, this form decreased significantly with co-application of vermicompost and zeolite. This may be due to redistribution of Zn from this form to less available forms (e.g. organic and residual fractions). The addition of vermicompost had not significant effect on the carbonated fraction of Zn, whereas co-application of zeolite and vermicompost significantly decreased concentration of Zn bound in carbonates. Singly zeolite and co-application of amendments decreased the concentration of Zn in Fe and Mn oxides bound. Although singly compost and zeolite amendments increased concentration of Zn bound to organics, this form decreased furthest with co-application of them. Zeolite and vermicompost alone had not significant effect on mobility factor (MF) of Zn over the un-amended soil. Co-application of vermicompost and zeolite to polluted soil resulted in a significant decrease in MF values of Zn compared to control.
Conclusion
Co-application of vermicompost and zeolite to polluted soil resulted in redistribution of Zn from available forms (exchangeable 솫 soluble) to less available form (e.g. organic), thus may be useful for the immobilization of Zn from polluted sites.
Language:
Persian
Published:
Journal of water and soil, Volume:30 Issue: 2, 2016
Pages:
569 to 580
magiran.com/p1568291  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!