Performance Evaluation of Monte Carlo Simulation and FORM Method to Calculate Probability of Failure for Concrete Gravity Dams in Sliding Failure Mode under Static Loading

Abstract:
Failure of a concrete gravity dam will cause unavoidable human loss and financial damages. In this study SARIYAR concrete gravity dam, located in turkey was chosen as a case study and its probability of sliding failure in various condition was studied. The most important reason in sliding failure of a concrete dam was lateral and uplift loads, caused by increase in the level of reservoir water. Different scenarios were considered in which might happen for a dam, all the possible height of reservoir water simulated. Afterward, Probability of failure and reliability index was calculated with Monte Carlo simulation and FORM method in all conditions and comparison with each other. The influence of the Number of Simulations (NOS) in the Monte Carlo method was also discussed. Results showed that, in some cases, the resistance of the system was much more than the loads and limit state function had a significant distance from samples. In such states, Monte Carlo was unable to calculate the probability of failure with each NOS but FORM method obtained the Reliability Index (β) in these situations. It became clear that these values were far from reality. With increase in the forces, responses from Monte Carlo had a high degree of precision. The probability of failure generated by FORM method was less than a reality.
Failure of a concrete gravity dam will cause unavoidable human loss and financial damages. In this study SARIYAR concrete gravity dam, located in turkey was chosen as a case study and its probability of sliding failure in various condition was studied. The most important reason in sliding failure of a concrete dam was lateral and uplift loads, caused by increase in the level of reservoir water. Different scenarios were considered in which might happen for a dam, all the possible height of reservoir water simulated. Afterward, Probability of failure and reliability index was calculated with Monte Carlo simulation and FORM method in all conditions and comparison with each other. The influence of the Number of Simulations (NOS) in the Monte Carlo method was also discussed. Results showed that, in some cases, the resistance of the system was much more than the loads and limit state function had a significant distance from samples. In such states, Monte Carlo was unable to calculate the probability of failure with each NOS but FORM method obtained the Reliability Index (β) in these situations. It became clear that these values were far from reality. With increase in the forces, responses from Monte Carlo had a high degree of precision. The probability of failure generated by FORM method was less than a reality.
Failure of a concrete gravity dam will cause unavoidable human loss and financial damages. In this study SARIYAR concrete gravity dam, located in turkey was chosen as a case study and its probability of sliding failure in various condition was studied. The most important reason in sliding failure of a concrete dam was lateral and uplift loads, caused by increase in the level of reservoir water.
Language:
Persian
Published:
Quranic Knowledge Research, Volume:16 Issue: 3, 2016
Pages:
227 to 240
magiran.com/p1574004  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!