A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‮consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‮efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‮common weights (using multi objective DEA approach) to predict the efficiency of DMUs under mean chance constraints and ‮expected values of the objective functions. In the initial proposed‏ ‏DRF-DEA model, the inputs and outputs are assumed to be ‮characterized by random triangular fuzzy variables with normal distribution, in which data are changing sequentially. Under this ‮assumption, the solution process is very complex. So we then convert the initial proposed DRF-DEA model to its equivalent multi-‮objective stochastic programming, in which the constraints contain the standard normal distribution functions, and the objective ‮functions are the expected values of functions of normal random variables. In order to improve in computational time, we then ‮convert the equivalent multi-objective stochastic model to one objective stochastic model with using fuzzy multiple objectives ‮programming approach. To solve it, we design a new hybrid algorithm by integrating Monte Carlo (MC) simulation and Genetic ‮Algorithm (GA). Since no benchmark is available in the literature, one practical example will be presented. The computational results ‮show that our hybrid algorithm outperforms the hybrid GA algorithm which was proposed by Qin and Liu (2010) in terms of ‮runtime and solution quality. ‮
Journal of Optimization in Industrial Engineering, Volume:9 Issue: 20, Summer and Autumn 2016
75 to 90
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!