A novel method for classification of multi returns LiDAR data using geometrical-contextual information and prototype space
Author(s):
Abstract:
High accuracy and huge density of 3D points cloud acquired by airborne Lidar makes them as a good and suitable tool in order to analyze of terrain surface. In this procedure, points cloud clustering is a fundamental step in the procedure of information extraction form LiDAR's data. In this paper a novel method is proposed for supervised classification of LiDAR points cloud based on contextual analysis on LiDAR points. The proposed method consists of three main steps. In the first step, a set of contextual features are produced for each points in LiDAR data. In second step, optimum feature selection is done in the modified prototype space using a new strategy. The last step is conducted to a simple k-means clustering on the feature space spanned by optimum contextual clusters. An urban area with the residential texture has been used as the case study to evaluation of the proposed method. The results indicate proper classification accuracies. The overall accuracies and kappa coefficients was 93.15% and 0.89 respectively.
Keywords:
Language:
Persian
Published:
Journal of of Geographical Data (SEPEHR), Volume:25 Issue: 98, 2016
Pages:
15 to 23
https://www.magiran.com/p1591330