The Relationship between Integral Water Capacity (IWC) Index and some Soil Physical Properties in Khorasan-Razavi Province

Abstract:
Introduction
Soil is the main source of water retention and availability for plant uptake. The supplement of water is completely dependent on soil physical properties. The soils with higher values of available water are generally more productive because they can supply adequate moisture to plants during the intervals between irrigation or rainfall events. Generally according tothe spatial and temporal distribution of precipitation, Iran has an arid climate in which most of the relatively low annual precipitation falls from October through April. Thus, water deficiency along with the lack of organic carbon in the soil justifies the necessity of studying the soil, water and plant relationships that may improve the efficiency of water consumption in agricultural practices. For that reason, this research was conducted to investigate the relationship between some soil physical properties and Integral Water Capacity (IWC) index as one of the soil physical quality indices.
Materials And Methods
This study was conducted in Torogh Agricultural and Natural Resources Research Station in Khorasan-Razavi province, north-eastern Iran during 2013-2014. This station is located in south-east of Mashhad city with a semi-arid climate, annual precipitation of 260 mm and mean air temperature of 13.5 °C. The soil was classified in Entisols and Aridisols with a physiographic unit of alluvial plain that generally had medium to coarse textures in topsoil. Thirty points with different soil textures and organic carbon contents were selected as experimental plots. In order to measure different properties of the soil, two soil cores (8 cm diameter × 4 cm length cylinder for bulk density and 5 cm diameter × 5.3 cm length cylinder for sandbox measurements) and one disturbed soil sample (for other measurements) were collected from 0-30 cm depth of each plot. After conducting required laboratory analysis and field measurements using standard methods, the soil moisture curve parameters (RETC program), Porosity (POR), Air Capacity (AC), Relative Field Content (RFC) and Integral Water Capacity (IWC) index, were calculated. In this regard, integration calculations were done by Mathcad Prime 3 software. Finally, the relationship between the measured properties and IWC index were analyzed using Pearson correlation coefficient and stepwise multiple linear regression by SAS (9.1) statistical software.
Results And Discussion
Laboratory analysis results showed that the soil texture classes of samples were loam (40%), silt loam (23%), silty clay loam (17%), clay loam (13%), and sandy loam (7%). On average, very fine sand particles were dominant between five size classes of sand and the lowest values were devoted to very coarse sand particles. Soil porosity and air capacity calculation results indicated that on average bulk soil porosity (PORt) and bulk soil air capacity (ACt) were 0.46 and 0.20 (cm3cm-3), respectively. According to the results, RFC of 60% of studied soil samples were lower than 0.6, 7% were higher than 0.7 and only 33% were between 0.6-0.7 (optimal range). IWC index calculations were resulted in 0.13-0.25 (cm3cm-3) in different soil textures. The highest IWC were related to Loam and Clay Loam textures, respectively. Statistical analyses indicated that there were no significant relationship between soil particles (sand, silt and clay) and organic carbon content with IWC index. The factors of soil bulk density and RFC were negatively correlated with IWC index that means decreasing the soil bulk density and RFC would lead to the reduction of the effects of water uptake limitation factors by increasing the values of weighting functions (IWC calculations), and improvement of soil physical quality. High significant (P
Conclusion
The results indicated that in medium to coarse-textured soils, IWC index could be estimated using the bulk soil air capacity (ACt) and bulk soil porosity (PORt) factors that are derived from soil volumetric water content at saturation and field capacity points.
Language:
Persian
Published:
Journal of water and soil, Volume:30 Issue: 4, 2016
Pages:
1192 to 1201
magiran.com/p1608748  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!