A Novel Approach to Speaker Weight Estimation Using a Fusion of the i-vector and NFA Frameworks
This paper proposes a novel approach for automatic speaker weight estimation from spontaneous telephone speech signals. In this method, each utterance is modeled using the i-vector framework which is based on the factor analysis on Gaussian Mixture Model (GMM) mean super vectors, and the Non-negative Factor Analysis (NFA) framework which is based on a constrained factor analysis on GMM weight super vectors. Then, the available information in both Gaussian means and Gaussian weights is exploited through a feature-level fusion of the i-vectors and the NFA vectors. Finally, a least-squares support vector regression (LSSVR) is employed to estimate the weight of speakers from the given utterances. The proposed approach is evaluated on spontaneous telephone speech signals of National Institute of Standards and Technology (NIST) 2008 and 2010 Speaker Recognition Evaluation (SRE) corpora. To investigate theeffectiveness of the proposed approach, this method is compared to the i-vector-based speaker weight estimation and an alternative fusion scheme, namely the score-level fusion. Experimental results over 2339 utterances show that the correlation coefficients between the actual and the estimated weights of female and male speakers are 0.49 and 0.56, respectively, which indicate the effectiveness of the proposed method in speaker weight estimation.
Journal of Electrical Systems and Signals, Volume:3 Issue: 1, 2015
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!