Sustainable Supplier Selection by a New Hybrid Support Vectormodel based on the Cuckoo Optimization Algorithm

Abstract:
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, for taking performance variations of the sustainable suppliers quantified by the performance index. The presented artificial intelligent (AI) model is introduced in light of a new combination of least squares-support vector machine (LS-SVM) and cuckoo optimization algorithm (COA). The LS-SVM is used in regards to the mapping capacity amongst performance index and its causative input criteria. The COA is presented to advance LS-SVM tuning parameters. In this exploration, an illustrative database comprising of 80 historical cases is gathered to set up the presented intelligence system. In the light of experimental results, the presented COA-LS-SVM can effectively illustrate performance index’s variances since it has accomplished relatively low statistical metrics. Therefore, the proposed hybrid AI framework can be a promising approach to help the supply chain decision-makers in sustainable supply chain management (SSCM).
Language:
English
Published:
International Journal of Engineering, Volume:30 Issue: 6, Jun 2017
Pages:
867 to 875
https://www.magiran.com/p1704635  
سامانه نویسندگان
  • Author (2)
    Reza Tavakkoli Moghaddam
    Professor School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
    Tavakkoli Moghaddam، Reza
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)