An Adapted Non-dominated Sorting Algorithm (ANSA) for Solving Multi Objective Trip Distribution Problem
Author(s):
Abstract:
Trip distribution deals with estimation of trips distributed among origins and destinations and is one of the important stages in transportation planning. Since in the real world, trip distribution models often have more than one objective, multi-objective models are developed to cope with a set of conflict goals in this area. In a proposed method of adapted non-dominated sorting algorithm (ANSA) is introduced and applied on a multi objective trip distribution model. The objectives considered are: (1) maximization of the interactivity of the system, (2) minimization of the generalized costs and (3) minimization of the deviation from the observed year. in proposed ANSA using the sorting process of NSGA II and two proposed adapted operators a new adapted algorithm is introduced and applied to solve the three-objective model. To test the performance of the proposed algorithm, a set of Hong Kong data is used and results of applying proposed algorithm is compared to other models of the literature. The results show that proposed algorithms has better performance rather than the algorithms of the literature.
Language:
English
Published:
Global Analysis and Discrete Mathematics, Volume:2 Issue: 1, Winter and Spring 2017
Pages:
39 to 53
magiran.com/p1711110  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!