A genetic algorithm approach for open-pit mine production scheduling
Author(s):
Abstract:
In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms that widely are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D) copper orebody model. The orebody is featured as two-dimensional (2D) array of blocks. Likewise, counterpart 2D GA array was used to represent the OPPS problems solution space. Thereupon, the fitness function is defined according to the OPPS problems objective function to assess the solution domain. Also, new normalization method was used for the handling of block sequencing constraint. A numerical study is performed to compare the solutions of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; hereupon GA is found to be efficiently in solving OPPS problem.
Keywords:
Language:
English
Published:
International Journal of Mining & Geo-Engineering, Volume:51 Issue: 1, Winter and Spring 2017
Pages:
47 to 52
https://www.magiran.com/p1711916
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Sustainable Multi-Objective Mathematical Modeling for Selecting a Technology Transfer Method in the Automotive Battery Industry
Amirhossein Latifian, Reza Tavakkoli-Moghaddam *, Masoud Latifian, Mahdi Kashani
journal of Production and Operations Management, Summer 2025 -
Integrated Multi-Model Risk Assessment of an Aging Gas Pipeline Using Fuzzy AHP and 3D Uncertainty Matrix
Arman Gholinezhad Paji*, Ali Borozgi Amiri,
Iranian Journal Of Operations Research, Summer and Autumn 2024