An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
Author(s):
Abstract:
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature space without FS increases the computational cost which is a function of the length of the vector, and also, it helps to remove irrelevant attributes. The general approach in this paper combines the hybrid of Flower Pollination Algorithm (FPA) with Ada-Boost algorithm. The FPA is used for FS and the Ada-Boost is used for classification of text documents. Tests were conducted on Reuters-21578, WEBKB and CADE 12 datasets. The results show that the hybrid model has higher detection accuracy in FS compared with Ada-Boost algorithm with model. And comparisons are indicative of higher detection accuracy of the proposed model compared with KNN-K-Means, NB-K-Means and learning models.
Keywords:
Language:
English
Published:
Journal of Advances in Computer Research, Volume:9 Issue: 1, Winter 2018
Pages:
29 to 40
https://www.magiran.com/p1762911
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
An Improved Flow Direction Optimization Algorithm for Spam Email Detection
Hojjat Raie, *
Journal of Electronic and Cyber Defense, Spring 2025 -
Presenting a novel method to improve multi-layered perceptron artificial neural networks based on combination with frog leaping algorithm to detect spam emails
Ahmad Heydariyan, Farhad Soleymanian QareChopoq
Distributed computing and Distributed systems,