Impact of Time-of-Flight and Point-Spread-Function for Respiratory Artifact Reduction in PET/CT Imaging: Focus on Standardized Uptake Value

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background
The most important advantage of positron emission tomography/computed tomography (PET/CT) imaging is its capability of quantitative analysis. The aim of the current study was to choose the proper standardized uptake value (SUV) threshold, when the time-of-flight (TOF) and point spread function (PSF) were used for respiratory artifact reduction in the liver dome in a new-generation PET/CT scanner.
Materials And Methods
The current study was conducted using a National Electrical Manufacturers Association International Electrotechnical Commission body phantom, with activity ratios of 2:1 and 4:1. A total of 27 patients, with respiratory artifacts in the thorax region, were analyzed. PET images were retrospectively reconstructed using either a high definition (HD) PSF (i.e., a routine protocol) algorithm or HD㴡繌 (PSF䳡; i.e., to reduce the respiratory artifact) algorithms, with various reconstruction parameters. The SUVmax and SUVmean, at different thresholds (i.e., at 45%, 50%, and 75%), were also assessed.
Results
Although in comparison to the routine protocol a higher SUV was observed when using the PSF䳡 method, this approach was used to reduce the respiratory artifact. The appropriate threshold for SUV was strongly related to the lesion size, reconstruction parameters, and activity ratio. The mean of the relative difference between PSF䳡 algorithm and routine protocol for SUVmax varied from 10.58±14.99% up to 35.49±32.60% (which was dependent on reconstruction parameters).
Conclusion
In comparison with other types of SUVs, the SUVmax value illustrated its significant overestimation, especially at the 4:1 activity ratio. The poor agreement between SUVmax and SUV50% was also observed. When the TOF and PSF are utilized to reduce respiratory artifacts, the SUV50% can be an accurate semi-quantitative parameter for PET/CT images, for all lesion sizes. For smaller lesions, however, a smaller filter size was required to observe an accurate SUV.
Language:
English
Published:
Tanaffos Respiration Journal, Volume:16 Issue: 2, Spring 2017
Page:
127
magiran.com/p1778068  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!