Penalized Regression Versus Random Forest Model in Analyzing High Dimensional Proteomic Data: Diagnosis of IgA Nephropathy
Abstract:
Background
Immunoglobulin A nephropathy (IgAN) is considered a chronic renal disease and the most prevalent glomerulonephritis throughout the world. In order to model a large number of extracted biomarkers and identify the most effective biomarkers on IgAN disease, the researchers implemented 2 methods of penalized regression, known as LASSO and MCP logistic regression versus random forest method, which are appropriate for high dimensional and low sample size problems.
Methods
Urinary protein profiles for both groups were composed of 493 proteins. Data were obtained in the case group (13 patients) using an experiment on urinary protein profile of patients with IgAN and in the control group (8 healthy individuals) using nanoscale liquid chromatography with tandem mass spectrometry. Mann Whitney test as univariate analysis, and LASSO, MCP and random forest as multivariate analysis were used to evaluate the simultaneous effect of biomarkers on IgAN in a high dimensional and low sample size setting. All the statistical analyses were performed in the R 3.3.2 software.
Results
Although Mann Whitney test showed that 144 out of 493 proteins were significantly different between the 2 groups, LASSO, MCP, and random forest showed only 7, 3, and 5 biomarkers as effective factors in IgAN diseases, respectively. The most effective biomarker was SULF2 (OR = 0.28) and ALBU (OR = 2.66) in LASSO, A1AT (OR = 73.7) in MCP, and GOLM1 and IBP7 in the random forest method.
Conclusions
Because all the 3 models were able to truly differentiate all the IgAN patients from the control groups, the researchers suggest the proposed model for high dimensional and low sample size datasets.
Article Type:
Research/Original Article
Language:
English
Published:
Shiraz Emedical Journal, Volume:19 Issue: 1, 2018
Page:
2
magiran.com/p1779847  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.