Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Article Type:
Research/Original Article (بدون رتبه معتبر)
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicity relationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct the nonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon different subsets of descriptors. The first one used log ow K and LUMO E as inputs and had good prediction ability; for the training set of 28 compounds 2 Training R was 0.86 and for the test set of 10 compounds, the corresponding statistic was 2 Test R =0.97. Two outliers were detected for this ANFIS model and removing them improved the quality of the model. Another ANFIS model was constructed based on PEOE_VSA_FPNEG and G3u descriptors chosen by exhaustive search of all two combinations of calculated descriptors by Dragon and MOE softwares. The later ANFIS model showed better performance than the former ( 2 Training R =0.92 and 2 Test R =0.90) and no outlier was detected.
Journal of the Iranian Chemical Research, Volume:5 Issue: 3, Summer 2012
177 to 185  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!