Application of Wavelet Denoising and Artificial Intelligence Models for Stream Flow Forecasting
In this study, the ability of threshold based wavelet denoising Least Square Support Vector Machine (LSSVM) and Artificial Neural Network (ANN) models were evaluated for forecasting daily Multi-Station (MS) streamflow of the Snoqualmie watershed. For this aim, at first step, outflow of the watershed was forecasted via ad hoc LSSVM and ANN models just by one station individually. Therefore, MS-LSSVM and MS-ANN were employed to use entire information of all sub-basins synchronously. Finally, the streamflow of sub-basins were denoised via wavelet based thresholding method, then the purified signals were imposed into the LSSVM and ANN models in a MS framework. The results showed the superiority of ANN to the LSSVM, MS model to the individual sub-basin model, using denoised data with regard to the noisy data, e.g., DCLSSVM=0.82, DCANN=0.85, DCMS-ANN=0.91, DCdenoised-MS-ANN=0.94.
Advance Researches in Civil Engineering, Volume:1 Issue: 1, Winter 2019
1 to 8  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!