Investigation of Effects of Entrance Channel Walls on the ‎Hydraulic Performance of ‎Arced Labyrinth Weirs

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Labyrinth weir is one of the approaches to increase the discharge capacity. An arced ‎configuration improves the orientation of the labyrinth weir cycles to the approach flow and ‎increases the weir crest length for a given width. In this study, the effects of the entrance flow ‎conditions on the hydraulic‏ ‏performance of the arced ‎labyrinth weirs is studied experimentally.‎‏ ‏The effects of the angle between the entrance channel walls (Θ′) on the discharge coefficient ‎and the efficiency are investigated for different values of the ‎headwater ratio (Ho/P), the ‎downstream sidewall angle (α), and the weir arc ‎angle (Θ).‎ Experiments were conducted in a recirculating flume‏ ‏which is 10 m long, 2 m wide, and 0.9 m ‎deep at Tarbiat Modares University. To simulate the reservoir conditions, a specific setup was ‎added to the flume, known as the reservoir simulator. The flume was launched from its two ends ‎by two pipelines. The inflow passes from underneath of the reservoir simulator and enters into it ‎through a semi-circular opening in its horizontal‏ ‏wall. After moving‏ ‏over the horizontal‏ ‏wall, the ‎flow comes up through the gap between the vertical wall. Finally, it flows on the platform and ‎moves towards the downstream channel. All the plates (including the platform and the simulator ‎walls) have a semicircular plan-view with a porosity equal to zero. The‏ ‏weirs were mounted on ‎the platform at the entrance of the downstream channel. Totally 132 experiments were ‎conducted to investigate the effects of the mentioned parameters on hydraulic performance of ‎arced labyrinth weirs.‎ Due to the nappe interference, the local submergence forms in the downstream of the ‎labyrinth ‎weirs. The size‎ of local submergence regions increase by increasing the ‎headwater ratio ‎and the arc angle. However, vice versa trend occurs with the downstream sidewall angle. In ‎addition, for low values of the arc angle, the lateral flow from the side cycles to their adjacent ‎cycles produces the surface turbulences. The results ‎indicate that the discharge coefficient ‎decreases by increasing the ‎headwater ratio and the downstream sidewall angle. For low values ‎of the ‎headwater ratio, the discharge coefficient increases when the arc angle increases. ‎However, a decreasing trend is observed in high head conditions. By increasing the ‎arc angle ‎and decreasing the downstream sidewall angle, the efficiency of a labyrinth weir can be ‎increased. However, the efficiency gains diminish by increasing the ‎headwater ratio.‎ The efficiency of a labyrinth weir can slightly be increased by projecting of the cycles into a ‎reservoir for low values of Ho/P, α, and Θ. However, in the wide range of the research domain, ‎the efficiency decreases‏ when ‏the angle between the entrance channel walls increases. ‎According to the results of this research, the efficiency of a labyrinth weir can be increased up ‎to 20% by channelizing abutments in high head conditions. However, the effect of Θ′ is ‎insignificant for higher values of Θ. In addition, as α decreases, the benefits and the losses of ‎decreasing Θ′ become more ‎severe at higher and lower values of Ho/P, respectively.‎
Language:
Persian
Published:
Quranic Knowledge Research, Volume:19 Issue: 1, 2019
Pages:
181 to 193
magiran.com/p2001457  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!