An Experimental Investigation of a Passively Flapping Foil in Energy Harvesting Mode

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Energy extraction through flapping foils is a new concept in the domain of renewable energy, especially when the system is fully driven by incoming free-stream flow, a phenomenon known as flow-induced vibration. To investigate this concept, a water tunnel test-rig was designed and fabricated, where a flat plate foil made from plexiglass performs two-degrees of freedom pitch and plunge motion under the influence of incoming water flow. For this study a power-takeoff system was not introduced, hence energy harvesting performance was evaluated through real-time force and motion measurements with the help of sensors. The energy harvester performed self-sustained flapping motions when the free-stream velocity reached a threshold value, known as the cut-off velocity, which for this test-rig is 0.40 m/s (without sensors) and 0.50 m/s (with sensors). To support these self-sustained flapping motions, inertial mass blocks were placed to provide the necessary inertia especially when the flat plate foil performed the pitching or stroke reversal action. Different inertial mass units (mib = 0.45, 0.90 & 1.35 kg/block) were tested to analyze their effect on the flat plate foil kinematics and its energy harvesting performance. Other parameters such as pitching amplitude (θo = 30° , 43° & 60° ) and free-stream velocity (U∞ = 0.57 m/s, 0.65 m/s and 0.78 m/s) were varied at fixed pivot location (xp = 0.65 chords (c)) to augment the varying inertial mass unit study. In the first section at fixed mib of 0.45 kg/block and xp = 0.65c from leading edge, energy harvesting performance (C̅p & η) was observed to increase with increase in pitching amplitude, while it degraded as the free-stream velocity increased. Best energy harvesting performance of η = 52.5% and C̅p = 1.124 was achieved with mib = 0.45 kg/block, θo = 60° and U∞ = 0.57 m/s. Varying mib also had a considerable effect on the energy harvesting performance of the test-rig, where the mib = 0.90 kg/block case showed a 36.5% and 21.13% decline in performance compared to the mib = 0.45 and 1.35 kg/block cases, respectively at θo = 60° and U∞ = 0.57 m/s. This shows that the energy harvester is sensitive to changes in inertial loads, affecting the forcemotion synchronization which eventually affects its performance.
Language:
English
Published:
Journal Of Applied Fluid Mechanics, Volume:12 Issue: 5, Sep-Oct 2019
Pages:
1547 to 1561
magiran.com/p2016975  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!