Effect of water table depth on evaporation from soil

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and Objectives

The relation between water table depth and evaporation rate from bare soil is of great importance in arid and semi-arid areas. In this region, due to over irrigation, the water table is very close to the ground surface which leads to salinization of the soil. Evaporation from soil columns in the presence of a water table is a important that has received great attention for many decades. The soil-drying process has been observed to occur in three recognizable stages. The first stage is evaporation with constant intensity. Secondly, evaporation is in descending order. The third stage is the residual evaporation of low intensity, which begins after excessive drying of the surface layer of the soil and its effect on reducing the hydraulic conductivity of the soil. Precise determination of evaporation from bare ground surface in semi-arid or arid regions then becomes critically important. The purpose of this study was to determine the effect of water table depth on the evaporation from soil surface, as well as the determination of different evaporation stages.

Materials and Methods

The soil used in this experiment was loam with a bulk density of 1.32 gr/cm3. The experiment was conducted in a greenhouse and the duration was 74 days. Soils Were sived through a 2-mm mesh and then packed into the soil columns using soil funnel. The soil columns were cylindrical PVC tubes of 200 mm inside diameter. Water table was stabilized at depths of 400, 600 and 800 mm from the soil surface, and the experiment was repeated twice. For stabilizing the water table in different depths, Each soil columns contained a pipe from the botton, to supply water from bottles that maintained the water table constant. The water losses from the soil profile was measured at different depths and times using Delta-T Device Moisture Meter.

Results

The results showed that water content between 0 and 160 mm in the soil column were decrease during the experiment and close the water table depth remained saturated. In the steady-state, the rate of water loss from bottle next to the soil column is equal to the rate of evaporation from the soil surface. In a non steady-state, the rate of evaporation equals the sum of the rate of water loss from bottle and the water depleted from the soil profile. The maximum evaporation from the the water table was related to a depth of 400 mm and equal 384.6 mm and the highest water loss from the soil profile was related to a depth of 800 mm and equal 51.3 mm. By increasing the water table depth from 400 to 800 mm (increased 100%), the evaporation rate from the water table 24 percent and the total evaporation from the soil surface decreased by 16.5 percent. The length of the first stage of the evaporation for the water table depth 400 mm was 2 days and for 800 mm less than 1 day.

Conclusion

The results of this study gave us information on the flow of water above the shallow water table. Water content changes in the soil surface soil are higher than close watertable. Movement of water close water table is liquid and close the soil surface is vapor. The duration of the first stage of evaporation has decreased with increase water table depth. In general, it can be concluded that evaporation from the water table can provide a large portion of the water requirement by the plants.

Language:
Persian
Published:
Water and Soil Conservation, Volume:26 Issue: 3, 2019
Pages:
177 to 192
magiran.com/p2031955  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!