Estimation of barley yield under irrigation with wastewater using RBF and GFF models of artificial neural network
Message:
Abstract:

In this study, barley yield has been estimated via radial basis function network (RBF) and feed-forward neural networks (GFF) models of artificial neural network (ANNs) in Torbat-Heydarieh of Iran. For this purpose, a dataset consists of 200 data at three levels of irrigation with well water, industrial wastewater (sugar factory wastewater), a combination of well water and wastewater in two levels (complete irrigation and irrigation with 75 % water stress) and soil characteristics of area were used as input parameters. To achieve this goal, based on the number of data and inputs, 200 barley field experiments data set were used, of which 80 % (160 data) was used for the training and 20 % (40 data) for the testing the network. The results showed that RBF model has high potential in estimating barley yield with Levenberg Marquardt training and 4 hidden layers. Also the values of statistical parameters R2 and RMSE were 0.81 and the 33.12, respectively. In general, the results showed that ANNs model is able to better estimate the barley yield when irrigation water level parameter with well water is selected as input.

Article Type:
Research/Original Article
Language:
English
Published:
Journal of Applied Research in Water and Wastewater, Volume:6 Issue:1, 2019
Pages:
73 - 79
magiran.com/p2047555  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!