Determination of the Energy Windows for the Triple Energy Window Scatter Correction Method in Gadolinium-159 Single Photon Emission Computed Tomography Using Monte Carlo Simulation

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
In radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method using the SIMIND Monte Carlo simulation code in Gadolinium-159 (Gd-159) imaging.
Material and Methods
The energy window was set for various main energy window widths (i.e., 10%, 15%, and 20%) and sub-energy window widths (i.e., 3 and 6 keV).Siemens Medical System Symbia fitted with a high-energy collimator was used with Gd-159 point source positioned at seven locations inside the cylindrical water phantom. A comparison was made between the true primary to total ratio (calculated by SIMIND) and the primary to total ratio estimated using TEW method.
Results
The findings of this study showed that 20% of the main energy windows with 3 and 6 keV sub-energy windows were optimal for the implementation of the TEW method in Gd-159.
Conclusion
According to the results, the optimal energy windows for Gd-159 scintigraphy were the sub-energy windows of 3 and 6 keV. These findings could be helpful in the quantification of Gd-159 imaging.
Purpose
In radio-nuclides imaging, object scatter is one of major factors which leads to degradation of image quality. Therefore, the correction of scattered photons has a great impact to improve the image quality. The aim of this work was to determine the main and sub-energy windows for the triple energy window (TEW) scatter correction method using Monte Carlo simulation SIMIND code for Gadolinium-159 (Gd-159) imaging.
Methods
Energy window was set for various main energy window width (10,15 and 20%) and sub energy window width (3 and 6 keV). Siemens Medical System Symbia fitted with High Energy collimator (HE) was imaged with Gd-159 point source positioned at seven locations inside cylindrical water phantom. The true primary to total ratio (calculated by SIMIND) and the primary to total ratio estimated using TEW method were compared.
Results
A 20% of main energy window with 3 and 6 keV sub-energy windows were found to be optimal for implementation of the TEW method in Gd-159.
Conclusion
The obtained results provide the optimal energy window for Gd-159 scintigraphy data and will aid the quantification of Gd-159 imaging.
Language:
English
Published:
Iranian Journal of Medical Physics, Volume:16 Issue: 6, Nov-Dec 2019
Pages:
405 to 409
magiran.com/p2052527  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!