Graph Based Feature Selection Using Symmetrical Uncertainty in Microarray Dataset

Article Type:
Research/Original Article (دارای رتبه معتبر)

Microarray data with small samples and thousands of genes makes a difficult challenge for researches. Using gene selection in microarray data helps to select the most relevant genes from original dataset with the purpose of reducing the dimensionality of the microarray data as well as increasing the prediction performance. In this paper, a new gene selection method is proposed based on community detection technique and ranking the best genes. Symmetric Uncertainty is used for selection of the best genes by calculation of similarity between two genes and between each gene and class label which leads to representation of search space as a graph, in the first step. Afterwards, the proposed graph is divided into several clusters using community detection algorithm and finally, after ranking the genes, the genes with maximum ranks are selected as the best genes. This approach is a supervised/unsupervised filter-based gene selection method that minimizes the redundancy between genes and maximizes the relevance of genes and class label. Performance of the proposed method is compared with thirteen well-known unsupervised/supervised gene selection approaches over six microarray datasets using four classifiers including SVM, DT, NB and k-NN. Results show the advantages of the proposed approach.

Journal of Information Systems and Telecommunication, Volume:7 Issue: 1, Jan-Mar 2019
35 to 49  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!