A Novel Approach for Cluster Self-Optimization Using Big Data Analytics

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

One of the current challenges in providing high bitrate services in next generation mobile networks is limitation of available resources. The goal of proposing a self-optimization model is to maximize the network efficiency and increase the quality of services provided to femto-cell users, considering the limited resources in radio access networks. The basis for our proposed scheme is to introduce a self-optimization model based on neighbouring relations. Using this model, we can create the possibility of controlling resources and neighbouring parameters without the need of human manipulation and only based on the network’s intelligence. To increase the model efficiency, we applied the big data technique for analyzing data and increasing the accuracy of the decision-making process in a way that on the uplink, the sent data by users is to be analyzed in self-optimization engine. The experimental results show that despite the tremendous volume of the analyzed data – which is hundreds of times bigger than usual methods – it is possible to improve the KPIs, such as throughput, up to 30 percent by optimal resource allocation and reducing the signaling load. Also, the presence of feature extraction and parameter selection modules will reduce the response time of the self-optimization model up to 25 percent when the number of parameters is too high Moreover, numerical results indicate the superiority of using support vector machine (SVM) learning algorithm. It improves the accuracy level of decision making based on the rule-based expert system. Finally, uplink quality improvement and 15-percent increment of the coverage area under satisfied SINR conditions can be considered as outcome of the proposed scheme.

Language:
English
Published:
Journal of Information Systems and Telecommunication, Volume:7 Issue: 1, Jan-Mar 2019
Pages:
50 to 64
magiran.com/p2053013  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!