Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation state-based models, i.e. SRK-EOS and PR-EOS and four empirical equations, i.e. Whitson, Standing, Wilson and Ghafoori et al. Compared to the experimental data, the average relative deviations (ARD) of bubble pressure prediction for these equations were obtained to be 14%, 29%, 66%, 30%, 38%, and 11%, respectively. The best semi-empirical equation has an ARD of about 11% while, the ANN and LS-SVM models have an ARD of 8% and 4.68%, respectively. Thus, it can be concluded that generally, these soft computing models appear to be more accurate than the empirical and EOS based methods for prediction of bubble point pressure of reservoir fluids.
Keywords:
Language:
English
Published:
Journal of Chemical and Petroleum Engineering, Volume:53 Issue: 2, Dec 2019
Pages:
177 to 189
https://www.magiran.com/p2066603
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Optimization and modeling of the stale bread drying with three different dryers
Samaneh Heirani, *, Sara Nanvakenari
Journal of Innovative Food Technologies, -
Evaluation of far-infrared drying on the quality properties of zucchini slices: influence of operating parameters
Fatemeh Jafari, *, Ebrahim Sadeghi
Journal of Innovative Food Technologies,