ارائه روشی سلسله مراتبی جهت خوشه بندی ساختاری-محتوایی گراف

پیام:
چکیده:

موجودیت‌ها در شبکه‌های اجتماعی علاوه بر داشتن ارتباط با یکدیگر، دارای محتوا نیز هستند. این مدل از شبکه‌ها می‌توانند بر روی گراف‌هایی که گره‌های آن شامل متن هستند، مدل شوند. خوشه‌بندی گراف ازجمله مهم‌ترین کارهای تحلیلی شبکه اجتماعی است. باوجوداین دو جنبه، اغلب روش‌های خوشه‌بندی تنها یکی از جنبه‌های ساختاری یا محتوایی گراف را در نظر می‌گیرند. الگوریتم‌های خوشه‌بندی ساختاری-محتوایی، گراف را از هر دو جنبه ساختار و محتوا به‌صورت هم‌زمان در نظر می‌گیرند. هدف این مقاله رسیدن به خوشه‌هایی با ساختار درونی منسجم (ساختاری) و مقادیر ویژگی (محتوایی) همگن در گراف است. الگوریتم ارائه شده در این مقاله RLS-Cluster نام داشته که به‌صورت سلسله مراتبی با حذف یال با کمترین میانگین شباهت میان گره‌های محله آن یال، عمل خوشه‌بندی را انجام می‌دهد. در این روش برای هر یال میانگین شباهت محله محاسبه شده و به‌عنوان وزن آن یال در نظر گرفته می‌شود. یال‌هایی که دارای کم‌ترین وزن هستند حذف می‌شوند. این مرحله تا زمانی که به تعداد خوشه موردنظر کاربر برسد، ادامه میابد. مقایسه الگوریتم مطرح‌شده با سه الگوریتم خوشه‌بندی ساختاری-محتوایی ارائه شده تاکنون، بر اساس معیارهای مختلف سنجش کیفیت خوشه، بیانگر عملکرد مناسب روش ارائه شده است. این معیارها شامل معیارهای ساختاری، محتوایی و ساختاری-محتوایی هستند.

نوع مقاله:
مقاله پژوهشی/اصیل
زبان:
فارسی
صفحات:
1107 -1117
لینک کوتاه:
magiran.com/p2071537 
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!