A New Adaptive Load-Shedding and Restoration Strategy for Autonomous Operation of Microgrids: A Real-Time Study

Islanding operation is one of the main features of a MicroGrid (MG), which is realized regarding the presence of distributed energy resources (DERs). However, in order to deal with the control challenges, which an MG faces during island operation, particularly when the transition is associated with certain excessive load, an efficient control strategy is required. This paper introduces a Central Management Agent (CMA) which maintains the stability of the MG, once it is islanded, by controlling an Energy Storage System (ESS) and a Central Synchronous Generator (CSG). Further, this paper proposes a new adaptive load-shedding/restoration schemes that calculates the amount of power imbalance based on frequency measurements combined with the mean value of the frequency gradient. The primacy of the proposed scheme over existing schemes, like instantaneous frequency gradient-based load shedding scheme, is its robustness against frequency oscillations. Moreover, the proposed method acts compatible with the control routine of DERs and the intermittent nature of the PV plant. As another salient feature of this paper, a Hardware In the Loop (HIL) testbed for real-time simulation is developed under which the proposed scheme and related communication with CMA along with other components are evaluated. The obtained results show that the control strategy can confidently conserve the stability of the MG in islanded mode and meet smooth reconnection to the grid-connected mode.

Article Type:
Case Study
International Journal of Engineering, Volume:33 Issue:1, 2020
82 - 91
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!