Experimental Study of the Effect of Guide Vanes Angle on Discharge Coefficient in Triangular and Trapezoidal Labyrinth Weirs
The discharge coefficient of labyrinth weirs increases with increasing the crest length within a certain width range. This study compares the discharge coefficient in two types of one-cycle triangular and trapezoidal labyrinth weirs. Experiments were conducted on a laboratory flume with length of 6, width of 0.6 and height of 0.6 m. The hydraulic performance of one-cycle triangular and trapezoidal labyrinth weirs with two, four and 6 guide vanes was compared. According to the results, the vanes with a placement angle of 60∘ in the trapezoidal weirs and a placement angle of 45∘ in the triangular weirs on the crests of weirs caused a further increase in the discharge coefficients of weirs. Consequently, at a constant hydraulic head (Hd/P) of 0.2, the discharge coefficient of a trapezoidal weir with two and six guide vanes increased by 38.8 and 10.3%, respectively, as compared to a trapezoidal weir without a guide vane. Furthermore, at a constant hydraulic head (Hd/P) of 0.2, the discharge coefficient of a triangular weir with two and six guide vanes increased 28.3% and 11.7%, respectively, as compared to a triangular weir without a guide vane.
-
Investigating the Energy Loss in the Dentated Flip Bucket and Dentated Triangular Sill Spillways in Laboratory and Numerical Conditions
M. Niroubakhsh, A.R. Masjedi*, M. Heidarnejad, A. Bordbar
Journal of Hydrology and Soil Science, -
Quantitative simulation of diverged flow using machine learning techniques and FLOW3D numerical modeling
Iman Karimi Sarmeydani, *, Aslan Egdernezhad
Irrigation and Drainage Structures Engineering Research,