Derivation of an analytical solution for evaluation of the pollution transport in the interconnected reservoirs and rockfill bodies of gabion dams

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In the present research, it was tried to evaluate the pollution transport in the interconnected reservoirs by deriving a theoretical solution based on the TS model partial differential equations and by conducting an experimental model. The theoretical model has been solved by operation of the Laplace transform to the PDE equations, and a complete evaluation of the model applicability and the parameters’ magnitudes have been fulfilled using experimental data series of two interconnected reservoirs. The created rockfill dams in the laboratory flume have been produced using three different median diameters of the 1.1, 2.3, and 3.6 cm. The other experiment variables were the entrance discharges as 7, 9, 11, and 13.5 l/s and linear source concentration of the 100, 140, and 200 gr/l. The mean values of the velocities, dispersion coefficients, and the logarithm of the mass transfer coefficients between the storage area and the main flow have been determined as 4 cm/s, 2.4 cm2/s, and -10.5 respectively. The corresponding of the experimental breakthrough curves with theoretical ones have been assessed and confirmed using statistical parameters of the RMSE and Nash-Sutcliff, having the values of 0.21 and 0.7, respectively. In the present research, it was tried to evaluate the pollution transport in the interconnected reservoirs by deriving a theoretical solution based on the TS model partial differential equations and by conducting an experimental model. The theoretical model has been solved by operation of the Laplace transform to the PDE equations, and a complete evaluation of the model applicability and the parameters’ magnitudes have been fulfilled using experimental data series of two interconnected reservoirs. The created rockfill dams in the laboratory flume have been produced using three different median diameters of the 1.1, 2.3, and 3.6 cm. The other experiment variables were the entrance discharges as 7, 9, 11, and 13.5 l/s and linear source concentration of the 100, 140, and 200 gr/l. The mean values of the velocities, dispersion coefficients, and the logarithm of the mass transfer coefficients between the storage area and the main flow have been determined as 4 cm/s, 2.4 cm2/s, and -10.5 respectively. The corresponding of the experimental breakthrough curves with theoretical ones have been assessed and confirmed using statistical parameters of the RMSE and Nash-Sutcliff, having the values of 0.21 and 0.7, respectively. In the present research, it was tried to evaluate the pollution transport in the interconnected reservoirs by deriving a theoretical solution based on the TS model partial differential equations and by conducting an experimental model. The theoretical model has been solved by operation of the Laplace transform to the PDE equations, and a complete evaluation of the model applicability and the parameters’ magnitudes have been fulfilled using experimental data series of two interconnected reservoirs. The created rockfill dams in the laboratory flume have been produced using three different median diameters of the 1.1, 2.3, and 3.6 cm. The other experiment variables were the entrance discharges as 7, 9, 11, and 13.5 l/s and linear source concentration of the 100, 140, and 200 gr/l. The mean values of the velocities, dispersion coefficients, and the logarithm of the mass transfer coefficients between the storage area and the main flow have been determined as 4 cm/s, 2.4 cm2/s, and -10.5 respectively. The corresponding of the experimental breakthrough curves with theoretical ones have been assessed and confirmed using statistical parameters of the RMSE and Nash-Sutcliff, having the values of 0.21 and 0.7, respectively. In the present research, it was tried to evaluate the pollution transport in the interconnected reservoirs by deriving a theoretical solution based on the TS model partial differential equations and by conducting an experimental model. The theoretical model has been solved by operation of the Laplace transform to the PDE equations, and a complete evaluation of the model applicability and the parameters’ magnitudes have been fulfilled using experimental data series of two interconnected reservoirs. The created rockfill dams in the laboratory flume have been produced using three different median diameters of the 1.1, 2.3, and 3.6 cm. The other experiment variables were the entrance discharges as 7, 9, 11, and 13.5 l/s and linear source concentration of the 100, 140, and 200 gr/l. The mean values of the velocities, dispersion coefficients, and the logarithm of the mass transfer coefficients between the storage area and the main flow have been determined as 4 cm/s, 2.4 cm2/s, and -10.5 respectively. The corresponding of the experimental breakthrough curves with theoretical ones have been assessed and confirmed using statistical parameters of the RMSE and Nash-Sutcliff, having the values of 0.21 and 0.7, respectively.
Language:
Persian
Published:
Journal of Hydraulics, Volume:14 Issue: 3, 2019
Pages:
49 to 66
magiran.com/p2111923  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!