The Future of Bankruptcy Risk Investigation Using Artificial Neural Networks Based on Multilayer Perceptron Approach (Empirical Evidence: Tehran Stock Exchange)

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The aim of  this research is Identification of the effective factors on bankruptcy prediction of Iranian companies by findings of artificial neural network (ANN) system based on Multilayer Perceptron Approach (PS) , and providing an appropriate statistical model for estimating the bankruptcy of Iranian companies by using the findings of The ANN implementation. we seek to answer the following question: Are we able to design a valid statistical model by using findings of artificial neural network (ANN) system to predict the bankruptcy of Iranian companies? The statistical population in this study is all of listed companies in Tehran Stock Exchange. By considering the criteria and method of systematic deletion, 172 companies from this statistical society have been selected as the sample in this research from 1386 to 1395. In order to make statistical analyzes in this study, we used from  methods  such as artificial neural network system based on multilevel perceptron approach, binary logistic regression, and tests such as Akaic, Schwarz, Hanan Quinn and Z wang test. The results of the analysis of the research data show that the ANN system can identify of the factors affecting on  bankruptcy of Iranian companies in the year before bankruptcy by Precision equal 98%.

Language:
Persian
Published:
Journal of Future Studies Management, Volume:30 Issue: 4, 2020
Pages:
205 to 218
https://www.magiran.com/p2112365  
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت می‌کنیم در سایت ثبت‌نام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند. راهنما
مقالات دیگری از این نویسنده (گان)