The Signless Laplacian Estrada Index of Unicyclic Graphs

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ among all ‎unicyclic graphs on $n$ vertices with a given diameter‎. ‎All extremal graphs‎, ‎which have been introduced in our results are also extremal with respect to the signless Laplacian ‎resolvent energy‎.the formula is not displayed correctly!

Language:
English
Published:
Mathematics Interdisciplinary Research, Volume:2 Issue: 2, Autumn 2017
Pages:
155 to 167
https://www.magiran.com/p2120090  
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت می‌کنیم در سایت ثبت‌نام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند. راهنما
مقالات دیگری از این نویسنده (گان)