Modeling of Spatio-Temporal Data with Non-Ignorable Missing
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Often, due to conditions under which measurements are made, spatio-temporal data contain missing values. Missing data in spatial or temporal vicinity may include useful information. Using this information, we can provide more accurate results, so missing data should be carefully examined. By modeling the missing process and spatio-temporal measurement process jointly, some lost information could be recovered. In this paper, we implement joint modeling in a Bayesian framework using the "shared parameter model" technique, so that the bad effects of missing values will be moderated. Also, we will associate these two processes via a latent spatio-temporal random field. To estimate the model parameters and for predictions, the Bayesian method INLA using SPDE approach is applied. Also, the lake surface water temperature data for Caspian sea is used to evaluate the performance of the joint model.
Keywords:
Language:
Persian
Published:
Journal of Advances in Mathematical Modeling, Volume:10 Issue: 1, 2020
Pages:
39 to 61
https://www.magiran.com/p2126674
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Penalized Composite Likelihood Estimation for Spatial Generalized Linear Mixed Models
*, Leyla Salehi
Journal of Sciences, Islamic Republic of Iran, Spring 2024 -
بیانیه اتحادیه انجمن های ایرانی علوم ریاضی به مناسبت روز آمار و برنامه ریزی
نشریه خبرنامه انجمن آمار ایران، پاییز 1403