FREE IDEALS AND REAL IDEALS OF THE RING OF FRAME MAPS FROM P(R) TO A FRAME

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Let $mathcal F_{mathcal P}( L)$ ($mathcal F_{mathcal P}^{*}( L)$) be the $f$-rings of all (bounded) frame maps from $mathcal P(mathbb R)$ to a frame $L$. $mathcal F_{{mathcal P}_{infty}}( L)$ is the family of all $fin mathcal F_{mathcal P}( L)$ such that ${uparrow}f(-frac 1n, frac 1n)$ is compact for any $ninmathbb N$ and the subring $mathcal F_{{mathcal P}_{K}}( L)$ is the family of all $fin mathcal F_{mathcal P}( L)$ such that ${{,mathrm{coz},}}(f)$ is compact. We introduce and study the concept of real ideals in $mathcal F_{mathcal P}( L)$ and $mathcal F_{mathcal P}^*( L)$. We show that every maximal ideal of $mathcal F_{mathcal P}^{*}( L)$ is real, and also we study the relation between the conditions ``$L$ is compact" and ``every maximal ideal of $mathcal F_{mathcal P}(L)$ is real''. We prove that for every nonzero real Riesz map $varphi colon mathcal F_{mathcal P}( L)rightarrow mathbb R$, there is an element $p$ in $Sigma L$ such that $varphi=widetilde {p_{{{,mathrm{coz},}}}}$ if $L$ is a zero-dimensional frame for which $B(L)$ is a sub-$sigma$-frame of $L$ and every maximal ideal of $mathcal F_{mathcal P}( L)$ is real. We show that $mathcal F_{{mathcal P}_{infty}}(L)$ is equal to the intersection of all free maximal ideals of $ mathcal F_{mathcal P}^{*}(L) $ if $B(L)$ is a sub-$sigma$-frame of a zero-dimensional frame $L$ and also, $mathcal F_{{mathcal P}_{K}}(L)$ is equal to the intersection of all free ideals $mathcal F_{mathcal P}( L)$ (resp., $mathcal F_{mathcal P}^*( L)$) if $L$ is a zero-dimensional frame. Also, we study free ideals and fixed ideals of $mathcal F_{{mathcal P}_{infty}}( L)$ and $mathcal F_{{mathcal P}_{K}}( L)$.the formula is not displayed correctly!

Language:
English
Published:
Journal of Algebraic Structures and Their Applications, Volume:7 Issue: 2, winter-spring 2020
Pages:
93 to 113
https://www.magiran.com/p2127218  
سامانه نویسندگان
  • Estaji، Ali Akbar
    Corresponding Author (1)
    Estaji, Ali Akbar
    Full Professor Faculty of Mathematics and Computer Science, Hakim Sabzevari University, Sabzvar, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)