Global Sensitivity Analysis of a Coastal Groundwater Simulation Model Using Five Methods (Lahijan-Chaboksar Aquifer)

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Water supply from groundwater resources because of rapid population growth and coastal zones development, converts the intensity of seawater intrusion to a global concern in these areas. Analyzing the sensitivity of costal aquifers' behavior to different controlling factors, preventing the seawater intrusion to these resources and the related adverse consequences is an essential effort. This study aimed to analyze the global sensitivity of factors controlling the seawater intrusion and the interaction of Caspian Sea water and the considered coastal aquifer. To assess the seawater intrusion, SUTRA, a three-dimensional density-dependent calibrated and validated numerical model, was employed. For this purpose, five well-known global sensitivity analysis methods have been employed and the sensitivity indices of each methods have been calculated. The permeability of first layer was the most sensitive parameter based on FAST, VBSA, PAWN and RSA methods among five considered methods. The fifth layer’s permeability was found to be the most sensitive parameter by applying EE. Overall, the higher the permeability of extended layers nearer to coastline, the larger the seawater intrusion. Therefore, the permeability of such layers effectively contributes to seawater intrusion. These findings can be used to support the management-related decisions and prioritize the measurements conducted on the aquifer in the study area. Such decisions are not based on the local findings and consider all possible changes of layers' permeability, therefore cause to more reliability.

Language:
Persian
Published:
Iranian Journal of Soil and Water Research, Volume:51 Issue: 3, 2020
Pages:
603 to 615
https://www.magiran.com/p2148264