Effects of Artificial and Natural Nitrification Inhibitors on Plant Growth Characteristics and Nitrate Uptake by Lettuce

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

 Nitrification inhibitors are compounds that slow biological oxidation of ammonium to nitrite by reducing the activity of Nitrosomonas bacteria, without affecting the subsequent oxidation of nitrite to nitrate, either by inhibiting or interfering with the metabolism of nitrifying bacteria. The first step of nitrification is inhibited (i.e., the activity of Nitrosomonas bacteria) by the nitrification inhibitors, while the second step for oxidation of nitrite (NO2-) to nitrate (NO3-) is normally not influenced. In recent years, numerous compounds have been identified and used as nitrification inhibitors, particularly in agricultural soils. They are chemical compounds that slow the nitrification of ammonia, ammonium-containing, or urea-containing fertilizers, which are applied to soil as fertilizers, such as  thiourea, carbon Sulfide,  thioethers, ethylene, 3-amino-1,2,4-triazole, dicyandiamide (DCD), 2-amino-4-chloro-6-methyl pyrimidine, ammonium thiosulphate and 3,4-dimethylpyrazole phosphate (DMPP). These inhibitors reduce the losses of nitrogen in soil. Some nitrification inhibitors are very effective in the efficiency of the nitrogen fertilizers. Recently, a lot of attention has been paid to nitrification inhibitors from an environmental point of view. Some nitrification inhibitors are very expensive and not economically suitable for land application. Nonetheless, many farmers and researchers apply these compounds for many purposes in some specific places. On the other hand, there are many inexpensive natural nitrification inhibitors such as Artemisia powder, Karanj (Pongamia glabra), neem (Azadrachta indica) and tea (Camellia sinensis) waste which can compete with the artificial nitrification inhibitors such as 3, 4-dimethylpyrazole phosphate (DMPP), dicyandiamide (DCD) which are very common nitrification inhibitors. Applying 1.5 kg ha-1 of DMPP is sufficient to achieve optimal nitrification inhibition. 4-dimethylpyrazole phosphate (DMPP) can significantly shrink nitrate (NO3) leaching. 4-dimethylpyrazole phosphate (DMPP) may also decrease N2O emission and the use of DMPP-containing fertilizers can improve yield. The aim of this study was to compare the effect of 3, 4-dimethylpyrazole phosphate (DMPP), Dicyandiamide (DCD) and powder Artemisia (ART) at the presence of Urea, cow manure and Vermicompost.

Material and Methods

 Effects of three nitrification inhibitors, (3, 4-dimethylpyrazole phosphate (DMPP), Dicyandiamide (DCD) and powder Artemisia (ART)) at the presence of three nitrogen sources (Urea, cow manure and Vermicompost) were investigated in a calcareous soil under lettuce cultivation in a greenhouse condition.  The changes in the soil mineral nitrogen (nitrate and ammonium), plant nitrogen, nitrate accumulation in leaves and some of growth characteristics such as lettuce chlorophyll content, leaf area index, leaf dry weight and root dry weight were determined. The experiment was carried out in a completely randomized factorial design with three replications. Soil ammonium and nitrate concentration were measured during the experiment. The growth characteristics of lettuce were also measured at the end of experiment. Nitrogen and nitrate contents were also determined in lettuce leaves. 

Results and Discussion

 The results of the experiment showed that soil nitrate decreased at the presence of three nitrification inhibitors but the soil nitrogen ammonium increased significantly. Application of nitrification inhibitors also reduced the concentration of nitrate in the lettuce leaves during two harvesting times. Moreover, the nitrogen concentration in the plant increased at the presence of nitrification inhibitors. The application of nitrification inhibitors influenced the plant growth characteristics and changed the lettuce growth characteristics. Chlorophyll content increased significantly in lettuce leaves. Leaf area index, leaf and root dry weight of lettuce increased notably when 3, 4-dimethylpyrazole phosphate (DMPP) and powder Artemisia (ART) nitrification inhibitors were applied to the soil samples. These growth characteristics, however, reduced significantly when dicyandiamide nitrification inhibitors was applied to the soil samples. In addition, the symptoms of toxicity were observed in lettuce plant when dicyandiamide nitrification inhibitors were applied to the soil samples. In general, the highest efficiency of nitrification inhibitors was recorded at the presence of urea fertilizer source and the greatest efficiency was observed initially for powder Artemisia (ART) and then for 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide, respectively, when urea fertilizer was applied to the soil samples. There was a positive correlation between soil nitrogen content and plant nitrate in the first and second harvest. The correlation between soil ammonium and plant nitrate (in the first and second harvest) and soil nitrate was negative.

Language:
Persian
Published:
Journal of water and soil, Volume:34 Issue: 2, 2020
Pages:
423 to 437
magiran.com/p2152063  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!