Investigation on Bioerosion in Miocene Coral-rich sequences in Western Makran, Bashagard area

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Due to difficult access to Makran Basin, a few geological investigations have been performed so far. The successions of Band-e-Chaker Unit in Tejek, Kermestann, and Irer sections were measured and studied. Bioerosion is frequently seen in the corals of the studied sections. Through this paper, we investigate on bioerosion and its related factors in carbonate coral-bearing parts of Band-e Chaker Unit in studied sections around Band-e Chaker Syncline with Burdigalian age. Tejek section is composed of pure limestone and Kermestan and Irer sections are mostly composed of marly limestone and clastic.

Discussions

Based on the presence of corals, foraminifera, and previous studies (McCall et al., 1994), the studied sections are attributed to Burdigalian. According to diverse coral morphotypes, these sections indicate shallowing upward trends. In the studied sections, the effect of bivalves and polychaetes (serpula worms) in bioerosion is more obvious. Serpula worms are often the first organisms that colonize the coral surfaces (Hutchings & Peyrot-Clausade, 2002). Trypanites sp. and honeycomb borings are the most observed serpula traces on corals. In lower parts of sections that are concordant with deeper parts, serpula worm borings are thicker in diameter in comparison with upper and shallower parts. The other trace fossil that could be seen in the sections is Gastrochaenolites sp. which is created by bivalves; these are less frequent than serpula worms and mostly are present in shallower parts of the sections. Beside nutrient level, different environmental factors such as oxygen and salinity can affect in bioerosion process. Clastic and siliciclastic inputs decrease water transparency and increase nutrient level; increasing nutrient level is concordant with decreasing large benthic foraminifera and enhancement of filter-feeders and encrusters and finally bioerosion (Morsilli et al., 2012). Bioerosion, encrustation, and abundance of bryozoa are the result of an increase of nutrient availability. Based on the mentioned notes, a nutrient condition in the Tejek section is oligotrophic to slightly mesotrophic, and in Kermestan and Irer sections mesotrophic nutrient condition is identified. Size measurements of bioeroders show that increasing depth reduces the diameter and abundance of them. In this case, it seems that the dissolved oxygen in the water can play an important role in bioeroders’ diameter size.

Acknowledgment

We would like to thank Dr. A. Bahrami, Dr. E. Mohammadi, and Dr. C. Chaix who helped us in this investigation.

Language:
Persian
Published:
نشریه دیرینه شناسی, Volume:4 Issue: 1, 2020
Pages:
45 to 64
magiran.com/p2157530  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!