Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of user interests, it seems reasonable to combine it with social networks information and the factor of time. Hence, this study, for the first time, tries to assess the efficiency of the recommender systems by combining fuzzy logic, longitudinal data and social networks information such as tags, friendship, and membership in groups. And the impact of the proposed algorithm for improving the accuracy of recommender systems was studied by specifying the neighborhood and the border between the users’ preferences over time. The results revealed that using longitudinal data in social networks information in memory-based recommender systems improves the accuracy of these systems.
-
Improving the Cross-Domain Classification of Short Text Using the Deep Transfer Learning Framework
Afsaneh Monemi Rad, *, Saeedeh Rajaei Harandi
Journal of Information Technology Management, Spring 2024 -
The RFMRv Model for Customer Segmentation Based on the Referral Value
Shokooh Mirfakhraei, *, Saeedeh Rajaei Harandi
Iranian Journal of Management Studies, Spring 2024