A Simulation Framework for Passive Acoustic Thermometry of Nonhomogeneous Materials

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Purpose

Internal temperature is a significant factor for medical diagnosis. There are several thermometric methods, including IR, MRI, and active ultrasonic thermometry, which have limitations for clinical applications. The new method in this field called Passive Acoustic Thermometry (PAT), which enhanced some of this limitation. PAT is a safe method for internal temperature estimation that works based on acoustic radiation of materials with a specific temperature. Several experimental studies have been carried out so far in the field of PAT. While, to the best of our knowledge, there is no simulation-based research for nonhomogeneous materials reported yet. In this article (for the first time) we proposed a simulation framework for evaluating the PAT methodologies in nonhomogeneous materials; also we proposed a new formulation for temperature estimation in PAT algorithm.

Materials and Methods

This framework supports the generation of acoustic radiation, signal processing, parameter estimation, and temperature reconstruction processes. At the moment the proposed framework estimates the temperature in the frequency domain and uses the frequency spectrum of the acquired ultrasound signals captured by a single transducer. Using the proposed framework, we tried to implement the previously practical experiments and the results of the simulation are consistent with those of the practical experiments. Also, we proposed the formulation that improves the error of temperature estimation.  

Results

We study 6 scenarios, including 2 environments with a target at 3 different temperatures. The average error of the proposed formulation in two different nonhomogeneous materials for three different temperatures is less than 0.25°C.

Conclusion

The results show that the proposed formulation is the best estimation in the formula that has been introduced until now and compare with the previous study the accuracy is enhanced 54% (from 0.79 to 0.36 deg.). Therefore, the proposed formula enhanced PAT accuracy for temperature estimation. Also, the results show that it is possible to use this framework to evaluate the PAT in different scenarios. Therefore, this method enhances the possibility of examination of different conditions and algorithms. It also reduces the cost of practical experiment.

Language:
English
Published:
Frontiers in Biomedical Technologies, Volume:7 Issue: 2, Spring 2020
Pages:
118 to 124
magiran.com/p2160415  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!