Nonlinear Vibration analysis of a composite cylindrical shell with internal pressure, subjected to a low velocity impact using analytical and FE methods

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In this paper, nonlinear vibration analysis of a composite cylindrical shell with internal pressure, subjected to a low velocity impact is investigated using analytical and FE methods. The governing coupled partial differential equations of motion are derived using Donnel’s nonlinear shell theory. The impact force is modeled by employing the modified Hertzian contact theory. To model the low velocity impact, the model proposed by Shivakumar is exploited. The governing nonlinear coupled partial differential equations of motion for the shell are solved using the Galerkin method. Then, the dynamic response and generated stresses of the cylindrical shell subjected to a low velocity impact are analyzed using the ABAQUS FE software and a mathematical code developed in the environment of Mathematica software. Finally, the effect of some parameters on the impact response is studied. These parameters include the number of layers, ply orientation, shell thickness and shell radius and characteristics of the striker. It is seen that ply orientation of the composite layer has a significant effect on the dynamic response of the shell under impact and when the ply angle increases the amplitude of dynamic response of the shell decreases. Moreover, for a shell with smaller radius the response frequency is higher and when the radius of the shell increases, its effect on the frequency variation, decreases.
Language:
Persian
Published:
Aerospace Mechanics Journal, Volume:16 Issue: 3, 2020
Pages:
59 to 73
https://www.magiran.com/p2174928