Metabolic fitness of Candida albicans is indispensable for functional drug efflux, ergosterol, and chitin biosynthesis

Article Type:
Research/Original Article (دارای رتبه معتبر)
Background and Purpose

The increment in fungal infections, particularly due to Candida species, is alarming due to the emergence of multidrug resistance (MDR). Hence, the identification of novel drug targets to circumvent the problem of MDR requires immediate attention. The metabolic pathway, such as glyoxylate cycle (GC), which utilizes key enzymes (isocitrate lyase [ICL] and malate synthase [MLS]), enables C. albicans to adapt under glucose-deficient conditions. This study uncovers the effect of GC disruption on the major MDR mechanisms of C. albicans as a human pathogenic fungus.

Materials and Methods

For the purpose of the study, efflux pump activity was assessed by phenotypic susceptibilities in the presence of substrates rhodamine 6G (R6G) and Nile red, along with R6G extracellular concentration (527 nm). In addition, ergosterol content was estimated by the alcoholic potassium hydroxide hydrolysis method. The estimation of chitin was also accomplished by the absorbance (520 nm) of glucosamine released by acid hydrolysis.


The results revealed that the disruption of ICL enzyme gene (Δicl1) led to the impairment of the efflux activity of multidrug transporters belonging to the ATP-binding cassette superfamily. It was further shown that Δicl1 mutant exhibited diminished ergosterol and chitin contents. In addition, all abrogated phenotypes could be rescued in the reverting strain of Δicl1 mutant.


Based on the findings, the disruption of GC affected efflux activity and the synthesis of ergosterol and chitin. The present study for the first time revealed that metabolic fitness was associated with functional drug efflux, ergosterol and chitin biosynthesis and validated GC as an antifungal target. However, further studies are needed to comprehend and exploit this therapeutic opportunity.

Current Medical Mycology, Volume:6 Issue: 3, Sep 2020
9 to 14  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!