Effect of Solvent on the Dispersibility of Single Walled Carbon Nanotubes: A Quantitative Structure-Property Relationship
Single-walled carbon nanotubes, as one of the most well-known categories of carbon nanomaterials, have various applications in different fields of science and industry, including photovoltaic applications such as solar cells and additives to increase the strength of composites. In some applications of these nanotubes, it is required to have these compounds in the solution phase. Therefore, choosing the right solvent for dispersing these compounds is very important. In this study, using the quantitative structure-property relationship (QSPR) method, the structure-property of the model is presented. Based on the results, a multiple linear model was obtained including 5 descriptors. The correlation coefficient in the training set, cross-validation and test set were 0.84, 0.91 and 0.92, respectively which indicate the efficiency of model. The possible interactions of the carbon nanotubes -solvent obtained from the proposed structure-dispersion model can be used to select the appropriate solvents for the solution (dispersion) of single-walled carbon nanotubes.