4-total mean cordial labeling in subdivision graphs

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Let $G$ be a graph. Let $f:Vleft(Gright)rightarrow left{0,1,2,ldots,k-1right}$ be a function where $kin mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $fleft(uvright)=leftlceil frac{fleft(uright)+fleft(vright)}{2}rightrceil$.  $f$ is called $k$-total mean cordial labeling of $G$ if $left|t_{mf}left(iright)-t_{mf}left(jright) right| leq 1$, for all $i,jinleft{0,1,2,ldots,k-1right}$, where $t_{mf}left(xright)$ denotes the total number of vertices and edges labelled with $x$, $xinleft{0,1,2,ldots,k-1right}$.  A graph with admit a $k$-total mean cordial labeling is called $k$-total mean cordial graph.

Language:
English
Published:
Journal of Algorithms and Computation, Volume:52 Issue: 2, Dec 2020
Pages:
1 to 11
https://www.magiran.com/p2230898