Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Article Type:
Research/Original Article (دارای رتبه معتبر)

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with time as new features stream in. For instance, in the problem of semantic segmentation of images using texture-based features, the number of features can be infinitely growing. In these dynamically growing scenarios, a rudimentary approach is waiting a long time for all features to become available and then carry out the feature selection methods. However, due to the importance of optimal decisions at every time step, a more rational approach is to design an online streaming feature selection (OSFS) method which selects a best feature subset from so-far-seen information and updates the subset on the fly when new features stream in. Any OSFS method must satisfy three critical conditions; first, it should not require any domain knowledge about feature space, because the full feature space is unknown or inaccessible. Second, it should allow efficient incremental updates in selected features. Third, it should be as accurate as possible at each time instance to allow having reliable classification and learning tasks at that time instance. In this paper, OSFS is considered from the geometric series of features adjacency matrix and, a new OSFS algorithm called OSFS-GS is proposed. This algorithm ranks features based on path integrals and the centrality concept on an online feature adjacency graph. The most appealing characteristics of the proposed algorithm are; 1) all possible subsets of features are considered in evaluating the rank of a given feature, 2) it is extremely efficient, as it converts the feature ranking problem to simply calculating the geometric series of an adjacency matrix and 3) beside selected features subset, it uses a redundant features subset that provides the reconsideration of good features at different time instances. This algorithm is compared with three state-of-the-art OSFS algorithms, namely information-investing, fast-OSFS and OSFSMI. The information-investing algorithm is an embedded online feature selection method that considers the feature selection as a part of learning process. This algorithm selects a new incoming feature if it reduces the model entropy more than the cost of the feature coding. The fast-OSFS algorithm is a filter method that gradually generates a Markov-blanket of feature space using causality-based measures. For any new incoming feature, this algorithm executes two processes: an online relevance analysis and then an online redundancy analysis. OSFSMI is a similar algorithm to fast-OSFS, in which uses information theory for feature analysis. The algorithms are extensively evaluated on eight high-dimensional datasets in terms of compactness, classification accuracy and run-time. In order to provide OSF scenario, features are considered one by one. Moreover, in order to strengthen the comparison, the results are averaged over 30 random streaming orders. Experimental results demonstrate that OSFS-GS algorithm achieves better accuracies than the three existing OSFS algorithms.

Signal and Data Processing, Volume:17 Issue: 4, 2021
3 to 14  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!