Concept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques cannot capture such “second-order dynamics” and analyze these processes as if they are in steady-state. Such changes can significantly impact the performance of processes. Hence, for the process management, it is crucial that changes in processes be discovered and analyzed. Process change detection is also known as business process drift detection.All the existing methods for process drift detection are dependent on the size of windows used for detecting changes. Identifying convenient features that characterize the relations between traces or events is another challenge in most methods. In this thesis, we propose an automated and window-independent approach for detecting sudden business process drifts by introducing the notion of trace embedding. Using trace embedding makes it possible to automatically extract all features from the relations between traces. We show that the proposed approach outperforms all the existing methods in respect of its significantly higher accuracy and lower detection delay.
-
Capabilities and Limitations of Persian Stemming in Natural Language Processing
Maryam Assadi *, Vida Shaghaghi,
Journal of Western Iranian Languages and Dialects, -
Description-based Post-hoc Explanation for Twitter List Recommendations
Havva Alizadeh Noughabi, Behshid Behkamal *,
Journal of Computer and Knowledge Engineering, Summer-Autumn 2024