A Game-Theoretic Approach for Robust Federated Learning
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Federated Learning enables aggregating models trained over a large number of clients by sending these models to a central server, while data privacy is preserved since only the models are sent. Federated learning techniques are considerably vulnerable to poisoning attacks. In this paper, we explore the threat of poisoning attacks and introduce a game-based robust federated averaging algorithm to detect and discard bad updates provided by the clients. We model the aggregating process with a mixed-strategy game that is played between the server and each client. The valid actions of the clients are to send good or bad updates while the server can accept or ignore these updates as its valid actions. By employing the Nash Equilibrium property, the server determines the probability of providing good updates by each client. The experimental results show that our proposed game-based aggregation algorithm is significantly more robust to faulty and noisy clients in comparison with the most recently presented methods. According to these results, our algorithm converges after a maximum of 30 iterations and can detect 100% of the bad clients for all the investigated scenarios. In addition, the accuracy of the proposed algorithm is at least 15.8% and 2.3% better than state of the art for flipping and noisy scenarios, respectively.
Keywords:
Language:
English
Published:
International Journal of Engineering, Volume:34 Issue: 4, Apr 2021
Pages:
832 to 842
https://www.magiran.com/p2252224
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
A systematic review of the foundations, applications, and challenges of federated learning.
, Mohsen Rezvani*, Esmaeel Tahanian
Signal and Data Processing, -
Predictive Factors of Infant Mortality Using Data Mining in Iran
Mahmoud Hajipour, Niloufar Taherpour, , Ebrahim Yousefi, Koorosh Etemad, Fatemeh Zolfizadeh, Abdolhalim Rajabi, Tannaz Valadbeigi, Yadollah Mehrabi
Journal of Comprehensive Pediatrics, Feb 2021