Enlarging the Region of Attraction for Nonlinear Systems through the Sum-of-Squares Programming
In the present study, a novel methodology is developed to enlarge the Region of Attraction (ROA) at the point of equilibrium of an input-affine nonlinear control system. Enlarging the ROA for non-polynomial dynamical systems is developed by designing a nonlinear state feedback controller through the State-Dependent Riccati Equation (SDRE). Consequently, its process is defined in the form of Sum-of-Squares (SOS) optimization problem with control and non-control constraints. Of note, the proposed technique is effective in estimating the ROA for a nonlinear system functioning on polynomial or non-polynomial dynamics. In the present study, the application of the proposed scheme are shown by numerical simulations.