Evaluation of Post-Processing and Bias Correction of Monthly Precipitation and Temperature Forecasts in Karun Basin
Efficient forecast of precipitation and temperature with a one-month horizon can provide managers with an exceptional opportunity to plan water resources and deal with floods and droughts. The application of proper post-processing and bias correction methods can much improve the accuracy of these predictions. In this study, the S2S (Sub seasonal to Seasonal) precipitation and temperature forecasts of ECMWF were evaluated in one of the important basins of Iran. A variety of methods were used for post-processing and bias correction of these predictions, and the results were compared with different evaluation criteria. Quantile mapping (QM), Bayesian model averaging (BMA), Support vector regression (SVR), an Empirical equation for bias correction of temperature, and some hybrid methods were applied to forecasts. The BMA outperformed the other methods in improving both temperature and precipitation forecasts. Raw precipitation and temperature forecasts were only applicable in 2 or 3 months of the year, but post-processing methods were able to accurately improve precipitation in half of the months, especially rainy months. The hybrid of empirical equation-BMA in 10 months of the year was led to better results than the estimate of the next month's temperature using climatological data.