Stability of a System of Euler-Lagrange Type Cubic Functional Equations in non-Archimedean 2-Normed Spaces
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Freese and Cho have introduced the non-Archimedean 2-normed spaces and Eshaghi, et al. have introduced the Menger probabilistic non-Archimedean 2-normed spaces. In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a system of Euler-Lagrange type cubic functional equations in the non-Archimedean 2-normed spaces. Also, we prove the generalized Hyers-Ulam-Rassias stability for this system in the Menger probabilistic non–Archimedean 2–normed spaces.
Keywords:
Language:
Persian
Published:
Journal of Advances in Mathematical Modeling, Volume:11 Issue: 1, 2021
Pages:
11 to 24
https://www.magiran.com/p2263620
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Integral type contraction and coupled fixed point theorems in ordered G-metric spaces
E. Lotfali Ghasab, H. Majani *, G. Soleimani Rad
Journal of Linear and Topological Algebra, Spring 2020 -
System of AQC functional equations in non-Archimedean normed spaces
H. Majani *
Journal of Linear and Topological Algebra, Winter 2019