An Algorithmic Trading system Based on Machine Learning in Tehran Stock Exchange

Article Type:
Research/Original Article (دارای رتبه معتبر)

Successful trades in financial markets have to be conducted close to the key recurrent points. Researchers have recently developed diverse systems to help the identification of these points. Technical analysis is one of the most valid and all-purpose kinds of these systems. With its numerous rules, the technical analysis endeavors to create well-timed and correct signals so that these points are identified. However, one of the drawbacks of this system is its overdependence on human analysis and knowledge in selecting and applying these rules. Employing the three tools of genetic algorithm, fuzzy logic, and neural network, this study attempts to develop an intelligent trading system based on the recognized rules of the technical analysis. Indeed, the genetic algorithm will assist with the optimization of technical rules owing to computing complexities. The fuzzy inference will also help the recognition of the total current condition in the market. It is because a set of rules will be selected based on the market kind (trending or non-trending). Finally, the signal developed by every rule will be translated into a single result (buy, sell, or hold). The obtained results reveal that there is a statistically meaningful difference between a stock's buy and hold and the trading system proposed by this research. In other words, our proposed system displays an extremely higher profitability potential.

Advances in Mathematical Finance and Applications, Volume:6 Issue: 3, Summer 2021
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!