Presentation of a New Method for the Fusion of Spatial-Temporal Land Surface Temperature Products of ASTER and MODIS Sensors Based on a Two-Dimensional Stationary Wavelet Transform

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Land surface temperature (LST) monitoring has been widely used as one of the most important environmental parameters by the high temporal resolution sensors such as the MODIS sensor (daily temporal resolution capability and spatial resolution of one kilometer). One of the main problems of these sensors is their low spatial resolution, which limits the performance of these sensors for applications such as fire detection in forest areas and the study of urban thermal islands. In contrast, high spatial resolution sensors such as the ASTER sensor (90 meter spatial resolution and 16-day temporal resolution at the land surface temperature product), they have low temporal resolution, which results in application such as rapid change monitoring. In fact, due to technical limitations, there is no sensor that has a high resolution in spatial and temporal dimensions. To solve this problem, low-cost and efficient spatial-temporal fusion methods have been developed. The most important methods for fusion spatial-temporal methods are enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and Spatial and Temporal Data Fusion Approach (STDFA). This work uses the ESTARFM and STDFA algorithms and a new method (SWT-STDFA) based on the STDFA method and the two-dimensional stationary wavelet transformation to fuse LST data spatially and temporally. The LST products of ASTER and MODIS sensors were fused for a part of Tehran city and finally, a virtual image was obtained with a spatial resolution equal to that of the ASTER sensor and a temporal resolution equal to that of the MODIS sensor. Also, based on the existence of a classification map prepared on the basis of normalized vegetation difference index (NDVI) in STDFA and SWT-STDFA algorithms, the effect of using normalized Green Difference Vegetation Indices (GNDVI) and soil adjusted vegetation Index (SAVI) on the accuracy of the synthetic image of the output is discussed. The results of the research indicate the high accuracy of the proposed method with the root mean square error of 3.03 Kelvin, standard deviation of 2. 21 Kelvin, mean absolute difference 1.72 Kelvin and correlation coefficient of 0.92 between the image of the actual land surface temperature and the predicted synthetic image Compared to the other two methods. Also, the increase of vegetation’s indices GNDVI and SAVI in the classification of both STDFA and SWT-STDFA methods did not have much effect on the accuracy of the synthetic image of the output.

Language:
Persian
Published:
Iranian Journal of Remote Sencing & GIS, Volume:12 Issue: 4, 2021
Pages:
93 to 114
magiran.com/p2281752  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!