A Nonlinear Autoregressive Stochastic Frontier Model with Dynamic Technical Inefficiency in Panel Data

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

A branch of researches is devoted to semiparametric and nonparametric estimation of stochastic frontier models to employ the advantages in the operations research technique of data envelopment analysis. The stochastic frontier model is the parametric competition of data envelopment technique. This paper focused on a nonlinear autoregressive stochastic frontier production model that covers dynamic technical inefficiency. We consider a semiparametric method for the model ‎by combining a parametric regression estimator with a nonparametric adjustment‎. The unknown parameters are estimated using the full maximum likelihood and pairwise composite likelihood methods‎. After the parameters are estimated by parametric methods‎, ‎the obtained regression function is adjusted by a nonparametric factor‎, ‎and the nonparametric factor is obtained through a natural consideration of the local -fitting criterion‎. ‎Some asymptotic and simulation results for the semiparametric method are discussed‎.

Language:
English
Published:
Iranian Journal Of Operations Research, Volume:11 Issue: 1, Winter and Spring 2020
Pages:
59 to 75
https://www.magiran.com/p2296880  
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت می‌کنیم در سایت ثبت‌نام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند. راهنما
مقالات دیگری از این نویسنده (گان)