Analytical Bound-State solution of the Schrodinger equation for the morse potential within the Nikiforov-Uvarov method
Article Type:
Research/Original Article (بدون رتبه معتبر)

The Morse potential has important and significance rule to describe the diatomic molecule energy and structure. However there is no any analytical solution for Schrodinger equation with this potential without approximation, therefore other ways such as numerical, perturbation, variation and so on are taken to deal with this potential. In this work the the Nikiforov-Uvarov method is taken to obtain its energy eigenvalues and eigenfunctions. In the ground state the Schrodinger equation with this potential have exact solution but with arbitrary l-state the Morse potential with centrifugal term have no exact solution therefore it is solved analytically with use the Pekeris approximation. Here in this work we solved the Schrodinger in the space of D dimension and use the Nikiforove-Uvarov method which is based on solving the hyper geometric type second-order differential equations by means of the special orthogonal functions.

Mathematics and Computational Sciences, Volume:2 Issue: 1, Winter 2021
61 to 70  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!